數(shù)字圖像處理的原理與應(yīng)用 2016年09月23日08:47 來(lái)源:|
什么是數(shù)字圖像處理
數(shù)字圖像處理(DigitalImageProcessing)是通過(guò)計(jì)算機(jī)對(duì)圖像進(jìn)行去除噪聲、增強(qiáng)、復(fù)原、分割、提取特征等處理的方法和技術(shù)。數(shù)字圖像處理的產(chǎn)生和迅速發(fā)展主要受三個(gè)因素的影響:一是計(jì)算機(jī)的發(fā)展;二是數(shù)學(xué)的發(fā)展(特別是離散數(shù)學(xué)理論的創(chuàng)立和完善);三是廣泛的農(nóng)牧業(yè)、林業(yè)、、軍事、工業(yè)和醫(yī)學(xué)等方面的應(yīng)用需求的增長(zhǎng)。
數(shù)字圖像處理(DigitalImageProcessing)又稱(chēng)為計(jì)算機(jī)圖像處理,它是指將圖像信號(hào)轉(zhuǎn)換成數(shù)字信號(hào)并利用計(jì)算機(jī)對(duì)其進(jìn)行處理的過(guò)程。
數(shù)字圖像處理的主要目的
一般來(lái)講,對(duì)圖像進(jìn)行處理(或加工、分析)的主要目的有三個(gè)方面
(1)提高圖像的視感質(zhì)量,如進(jìn)行圖像的亮度、彩色變換,增強(qiáng)、抑制某些成分,對(duì)圖像進(jìn)行幾何變換等,以改善圖像的質(zhì)量。
(2)提取圖像中所包含的某些特征或特殊信息,這些被提取的特征或信息往往為計(jì)算機(jī)分析圖像提供便利。提取特征或信息的過(guò)程是模式識(shí)別或計(jì)算機(jī)視覺(jué)的預(yù)處理。提取的特征可以包括很多方面,如頻域特征、灰度或顏色特征、邊界特征、區(qū)域特征、紋理特征、形狀特征、拓?fù)涮卣骱完P(guān)系結(jié)構(gòu)等。
(3)圖像數(shù)據(jù)的變換、編碼和壓縮,以便于圖像的存儲(chǔ)和傳輸。不管是何種目的的圖像處理,都需要由計(jì)算機(jī)和圖像專(zhuān)用設(shè)備組成的圖像處理系統(tǒng)對(duì)圖像數(shù)據(jù)進(jìn)行輸入、加工和輸出。
數(shù)字圖像處理的常用方法
數(shù)字圖像處理常用方法有以下幾個(gè)方面:
1)圖像變換:由于圖像陣列很大,直接在空間域中進(jìn)行處理,涉及計(jì)算量很大。因此,往往采用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散余弦變換等間接處理技術(shù),將空間域的處理轉(zhuǎn)換為變換域處理,不僅可減少計(jì)算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進(jìn)行數(shù)字濾波處理)。新興研究的小波變換在時(shí)域和頻域中都具有良好的局部化特性,它在圖像處理中也有著廣泛而有效的應(yīng)用。
2)圖像編碼壓縮:圖像編碼壓縮技術(shù)可減少描述圖像的數(shù)據(jù)量(即比特?cái)?shù)),以便節(jié)省圖像傳輸、處理時(shí)間和減少所占用的存儲(chǔ)器容量。壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進(jìn)行。編碼是壓縮技術(shù)中最重要的方法,它在圖像處理技術(shù)中是發(fā)展最早且比較成熟的技術(shù)。
3)圖像增強(qiáng)和復(fù)原:圖像增強(qiáng)和復(fù)原的目的是為了提高圖像的質(zhì)量,如去除噪聲,提高圖像的清晰度等。圖像增強(qiáng)不考慮圖像降質(zhì)的原因,突出圖像中所感興趣的部分。如強(qiáng)化圖像高頻分量,可使圖像中物體輪廓清晰,細(xì)節(jié)明顯;如強(qiáng)化低頻分量可減少圖像中噪聲影響。圖像復(fù)原要求對(duì)圖像降質(zhì)的原因有一定的了解,一般講應(yīng)根據(jù)降質(zhì)過(guò)程建立“降質(zhì)模型”,再采用某種濾波方法,恢復(fù)或重建原來(lái)的圖像。
4)圖像分割:圖像分割是數(shù)字圖像處理中的關(guān)鍵技術(shù)之一。圖像分割是將圖像中有意義的特征部分提取出來(lái),其有意義的特征有圖像中的邊緣、區(qū)域等,這是進(jìn)一步進(jìn)行圖像識(shí)別、分析和理解的基礎(chǔ)。雖然已研究出不少邊緣提取、區(qū)域分割的方法,但還沒(méi)有一種普遍適用于各種圖像的有效方法。因此,對(duì)圖像分割的研究還在不斷深入之中,是圖像處理中研究的熱點(diǎn)之一。
5)圖像描述:圖像描述是圖像識(shí)別和理解的必要前提。作為最簡(jiǎn)單的二值圖像可采用其幾何特性描述物體的特性,一般圖像的描述方法采用二維形狀描述,它有邊界描述和區(qū)域描述兩類(lèi)方法。對(duì)于特殊的紋理圖像可采用二維紋理特征描述。隨著圖像處理研究的深入發(fā)展,已經(jīng)開(kāi)始進(jìn)行三維物體描述的研究,提出了體積描述、表面描述、廣義圓柱體描述等方法。
6)圖像分類(lèi)(識(shí)別):圖像分類(lèi)(識(shí)別)屬于模式識(shí)別的范疇,其主要內(nèi)容是圖像經(jīng)過(guò)某些預(yù)處理(增強(qiáng)、復(fù)原、壓縮)后,進(jìn)行圖像分割和特征提取,從而進(jìn)行判決分類(lèi)。圖像分類(lèi)常采用經(jīng)典的模式識(shí)別方法,有統(tǒng)計(jì)模式分類(lèi)和句法(結(jié)構(gòu))模式分類(lèi),近年來(lái)新發(fā)展起來(lái)的模糊模式識(shí)別和人工神經(jīng)網(wǎng)絡(luò)模式分類(lèi)在圖像識(shí)別中也越來(lái)越受到重視。
數(shù)字圖像處理的應(yīng)用工具
數(shù)字圖像處理的工具可分為三大類(lèi):
第一類(lèi)包括各種正交變換和圖像濾波等方法,其共同點(diǎn)是將圖像變換到其它域(如頻域)中進(jìn)行處理(如濾波)后,再變換到原來(lái)的空間(域)中。
第二類(lèi)方法是直接在空間域中處理圖像,它包括各種統(tǒng)計(jì)方法、微分方法及其它數(shù)學(xué)方法。
第三類(lèi)是數(shù)學(xué)形態(tài)學(xué)運(yùn)算,它不同于常用的頻域和空域的方法,是建立在積分幾何和隨機(jī)集合論的基礎(chǔ)上的運(yùn)算。
由于被處理圖像的數(shù)據(jù)量非常大且許多運(yùn)算在本質(zhì)上是并行的,所以圖像并行處理結(jié)構(gòu)和圖像并行處理算法也是圖像處理中的主要研究方向。
責(zé)任編輯:姚泓澤